Xiugang Wu, Bo-Kang Su, Deng-Gao Chen, Denghui Liu, Chi-Chi Wu, Zhi-Xuan Huang, Ta-Chun Lin, Cheng-Ham Wu, Mengbing Zhu, Elise Y. Li, Wen-Yi Hung, Weiguo Zhu & Pi-Tai Chou
Nature Photonics 15, 780–786 (2021)
https://www.nature.com/articles/s41566-021-00870-3
Abstract
Research into organic light emitters employing multiple resonance-induced thermally activated delayed fluorescence (MR-TADF) materials is presently attracting a great deal of attention due to the potential for efficient deep-blue emission. However, the origins and mechanisms of successful TADF are unclear, as many MR-TADF materials do not show TADF behaviour in solution, but only as particular pure solids. Here, an investigation into a well-known MR-TADF material, DABNA-1, together with other new MR materials (9H-quinolino[3,2,1-kl]phenothiazin-9-one (QPO) and 9H-quinolino-[3,2,1-kl]-phenothiazin-9-one 5,5-dioxide (QP3O)), yields new insights regarding the origin of TADF. Although a material system may support the concept of MR, inefficiency in both forward and reverse intersystem crossings forbids TADF unless a suitable host material allows an exciplex-like host–emitter interaction that boosts TADF. This boosted-TADF mechanism can be generalized to any fluorescence dye that lacks TADF in the photoluminescence measurement but has a thermally accessible S1–T1 energy gap, opening the way to high-performance organic light-emitting diodes.